Source code for user_apps.special.plot_acq2106_123

#!/usr/bin/env python

import matplotlib.pyplot as plt
import numpy as np
from scipy import signal

[docs]def run_main(): ######################################################################## # Read and reshape the data. ######################################################################## SOURCE = './DATA/acq2106_123_CH00' NBOLO = 2 NPHYSICAL = NBOLO * 8 NLOGICAL = NPHYSICAL * 3 FS = 1e4 # Sample rate is 10 kSPS # Multiplexed data raw = np.fromfile(SOURCE, dtype='int32') # Demuxed into logical channels raw2d = raw.reshape((NLOGICAL, -1), order='F') # Demuxed and unpacked into physical quantities mag, phase, pwr = raw2d.reshape((NPHYSICAL, 3, -1)).transpose(1, 0, 2) # Convert to physical units A = mag * 1.25 * 5.688e-8 # Assume 1V25 gain setting phi = phase * 1.863e-9 P = pwr * 1.25 * 3.64e-6 time_vector = np.arange(mag.shape[-1]) / FS ######################################################################## # Plot the magnitude to verify we've read the correct data. ######################################################################## plt.figure() plt.plot(time_vector[20:], A[[9-1, 10-1, 11-1], 20:].T) plt.ylabel('Magnitude [V]') plt.xlabel('Time [s]') ######################################################################## # Calculate the incident power using the bolometer equation. ######################################################################## # Smooth the derivative a bit. dA = signal.savgol_filter(A, window_length=20, polyorder=3, deriv=1, axis=-1) dt = 1 / FS dAdt = dA / dt # Could also do dAdt = np.gradient(A, FS, axis=-1) if not concerned with noise. sens = np.full(NPHYSICAL, np.nan) sens[[9-1, 10-1, 11-1]] = [3.74, 4.24, 4.19] # copy from today's cal tau = np.full(NPHYSICAL, np.nan) tau[[9-1, 10-1, 11-1]] = [0.046, 0.046, 0.046] # Give sens and tau the right broadcasting behaviour. sens = sens[:, None] tau = tau[:, None] Pcalc = 1/sens * (A + tau * dAdt) # First 20 samples are contaminated by the filter warm up. Pcalc[:, :20] = np.nan plt.figure() plt.plot(time_vector, Pcalc[[9-1, 10-1, 11-1]].T) plt.ylabel('Absorbed power [W]') plt.xlabel('Time [s]') ######################################################################## # Fix the offset correction. ######################################################################## # Offset correction is not quite right, particularly for channel 10, which # is why we don't get a perfect square wave. If offset correction was perfect # the phase would be constant, but it varies slightly with the magnitude. plt.figure() plt.plot(time_vector[20:], phi[[9-1, 10-1, 11-1], 20:].T) plt.ylabel('Phase [radians]') plt.xlabel('Time [s]') # Try improving the offset correction in post-processing. Here I'm doing it # by trial and error, but in a tokamak environment one would record some data # before the start of the plasma and use that to re-baseline. # I'm planning to add a '/usr/local/bin/remove_bolo_offset' script to do # this automatically when I get the time. V = A * np.exp(-1j * phi) I0 = np.zeros(NPHYSICAL) Q0 = np.zeros(NPHYSICAL) I0[[9-1, 10-1, 11-1]] = [-7e-4, 4.3e-3, 4.3e-3] Q0[[9-1, 10-1, 11-1]] = [2e-4, -5.5e-3, -5.5e-3] offsets = I0 - 1j * Q0 offsets = offsets[:, None] Vcorr = V - offsets # If the offset correction is accurate, the phase should be more constant. # At least, it shouldn't vary significantly with the amplitude. plt.figure() plt.plot(time_vector[20:], np.angle(Vcorr)[[9-1, 10-1, 11-1], 20:].T) plt.ylabel('Phase with offset correction [radians]') plt.xlabel('Time [s]') ######################################################################## # Recalculate the power with the offset correction done more accurately. ######################################################################## # Match how BOLODSP calculates the real time PWR signal: smooth and differentiate # the real and complex parts of the voltage seprately, then take the magnitude at # the end. Pccorr = np.zeros_like(Vcorr) Pccorr.real = (1/sens) * (Vcorr.real + tau * signal.savgol_filter(Vcorr.real, 20, 3, 1, axis=-1) / dt) Pccorr.imag = (1/sens) * (Vcorr.imag + tau * signal.savgol_filter(Vcorr.imag, 20, 3, 1, axis=-1) / dt) Pccorr[:, :20] = np.nan + 1j * np.nan Pcorr = abs(Pccorr) plt.figure() plt.plot(time_vector, Pcorr[[9-1, 10-1, 11-1]].T) plt.ylabel('Absorbed power, offset corrected [W]') plt.xlabel('Time [s]') plt.show()
if __name__ == '__main__': run_main()